Problems Based on AGE | Free Online Test

Problems Based on AGE | Free Online Test

“Problems Based on Age” is a common chapter in competitive exams such as Railway, SSC and Bank. Many students prepare their maths from different platforms. Let’s check your ability…

Let’s have some warm-up Questions…

Practice Questions of Problems Based on AGE

Problems Based on AGE

Problems Based on AGE Question 1

The present age of Seema is one-fourth that of her Uncle. After 6 years the Uncle’s age will be twice the age of Rahul. If Rahul celebrated the fifth birthday 8 years ago. What is Seema’s present age?
सीमा की वर्तमान आयु उसके चाचा की आयु से एक-चौथाई है। 6 साल के बाद सीमा के चाचा की आयु राहुल से दोगुनी होगी। अगर राहुल ने 8 वर्ष पहले अपना पांचवा जन्मदिन मनाया। सीमा की वर्तमान आयु क्या है?
a. 6 Years
b. 8 Years
c. 7 Years
d. 9 Years

Shortcut Trick: Rahul celebrated his 5th birthday 8 years ago.
The present age of Rahul = 13
After 6 years, Uncle’s age will be twice of the Rahul.
2x(13+6) = 4X+6
X= 8 years
Seema Present age is = 8 years

Basic Method: Let present age of Seema is X, then Uncle’s age = 4X
6 years hence,
Uncle’s age = 4X+6
2 (Age of Rahul) = 4X+6
Age of Rahul = 2X+3
Present age of Rahul = 2X+3-6 = 2X-3
Rahul celebrated his 5th bairthday 8 years ago
So, Present age of Rahull is 5+8 = 13 years
2X-3 = 13
2X = 16
X = 8 years.
Seema Present age is = 8 years

Question 2

The sum of the ages of a student and teacher is 56 yrs. After 4 yrs, the age of the teacher will be three times that of the student. What is the present age of the student?
एक छात्र और शिक्षक की आयु का योग 56 वर्ष है। 4 वर्ष के बाद, शिक्षक की आयु छात्र की तुलना में तीन गुना होगी। छात्र का वर्तमान आयु क्या है?
a. 10 Years
b. 14 Years
c. 12 Years
d. 16 Years

Solution: Let the age of the student be x yrs.
Then, the age of the teacher is (56 – x) yrs.
After 4 yrs, 3(x+4) = 56 – x +4
Or, 4x =56 +4 – 12 = 48
x = 12 yrs
Thus, the student’s age = 12 years

Age Question 3

The ratio of Manish’s age 4 years ago and Anil’s age after 4 years is 1 : 1. If at present, the ratio of their ages is 5 : 3, then find the ratio between Manish’s age 4 years hence and Anil’s age 4 years ago.
मनीष की आयु का अनुपात 4 वर्ष पहले और अनिल की आयु 4 वर्ष के बाद 1: 1. है। यदि वर्तमान में, उनकी आयु का अनुपात 5: 3 है, तो मनीष की आयु 4 वर्ष और अनिल की आयु 4 वर्ष के बीच का अनुपात ज्ञात कीजिए।
a. 1 : 3
b. 3 : 1
c. 4 : 3
d. 3 : 4

Solution:  the ratio between Manish’s age 4 years hence and Anil’s age 4 years ago.
Manish’s Age : (5X+ 4)
Anil’s Age: (3X – 4)
The ratio of Anil’s age and Manish’s age
(5X+4)/(3X-4)= 24/8 = 3/1 = 3:1

Question 4

Reena got married 8 years ago. Today her age is 9/7 time her age at the time of her marriage. At present, her daughter’s age is 1/6 of her age. What was her daughter’s age 3 years ago?
रीना की शादी 8 साल पहले हुई थी। आज उसकी उम्र उसकी शादी के समय उसकी उम्र से 9/7 है। वर्तमान में, उनकी बेटी की उम्र उसकी उम्र का 1/6 है। 3 साल पहले उसकी बेटी की उम्र क्या थी?
a. 6 Years
b. 3 Years
c. 2 Years
d. 5 Years

Solution: Let the present age of Reena = X yrs.
Hence, X= (X-8) x 9/7
x=36 years.
So present age of daughter = 1/6 x 36 = 6 years.
3 years age of daughter = 6-3 = 3 years.

Problems Based on AGE Question 5

If the average age of a class is 15 years (including the age of the teacher); that of the boys is 10 years and if the age of the teacher is 13 years more than the average age of the girls , then what is the average age of the girls, given that the number of boys and girls is the same?
यदि किसी कक्षा की औसत आयु 15 वर्ष है (शिक्षक की आयु सहित); लड़कों की औसत आयु 10 वर्ष है और यदि शिक्षक की आयु लड़कियों की औसत आयु से 13 वर्ष अधिक है, तो लड़कियों की औसत आयु क्या है, यह देखते हुए कि लड़कों और लड़कियों की संख्या समान है?
a. 10
b. 12
c. Can’t be determined/निर्धारित नहीं किया जा सकता है
e. None of these/इनमें से कोई नहीं

Solution: Let the number of boys = the number of girls = n
Hence, the total age of boys = 10n
Let the average age of girls = x
Hence, the total age of girls = nx
Total age of the class = 10n + nx + x + 13
Total number of people in the class = n + n + 1 = 2n + 1
Average age of the class = (10n + nx + x + 13)/(2n + 1) = 15
Since this is a single linear equation in two variables, a unique solution can’t be found.
Therefore, the average age of girls cannot be determined.

Problem Based on Age Exam Details

Problems Based on AGE

Exam Practice Name Age
Number of Questions20
Type of QuestionsMULTIPLE CHOICE
LanguagesEnglish / Hindi

Are you ready for this exam practice

Problems Based on AGE Free Online Test Set-1

Instructions:

Each question carry 1 mark, no negative marks.
Click the ‘Finish quiz’ button to Submit your answers.
Don’t refresh the page or click back button of browser. your work will be lost.
If you want to give the answer to the question later, click the Review Question button.

Problems Based on AGE Free Online Test Set-2

Instructions:

Each question carry 1 mark, no negative marks.
Click the ‘Finish quiz’ button to Submit your answers.
Don’t refresh the page or click back button of browser. your work will be lost.
If you want to give the answer to the question later, click the Review Question button.

We hope you enjoyed “Problems Based on Age | Free Online Test” chapter. Keep practising to crack the exams. Best of luck for exams.

Click on the button to Like our page on Facebook:- 

Subscribe Exams’ Wrestlers Channel:-

Click here to Follow Exams’ Wrestlers on twitter:- Exams' Wrestlers Twitter Account